Course by tag

Modeling the Dynamics of Intensive Longitudinal Data

NOTE: this course is fully booked! This is a four-day course on how to study dynamics in intensive longitudinal data, such as ambulatory assessments (AA), experience sampling method (ESM) data, ecological momentary assessments (EMA), real time data capture, observational data or electronic daily diaries. We provide a tour of diverse modeling approaches for such data and the philosophies behind them, as well as practical experience with these modeling techniques using different software packages (including R and Mplus).

A Gentle Introduction to Bayesian Statistics

NOTE: this course is  fully booked! New applicants will be placed on a waiting list. This course describes the stages involved in Bayesian analysis: specifying the prior and data models, deriving inference, model checking and refinement. We discuss prior and posterior predictive checking, and selecting a technique for sampling from a probability distribution. Other topics discussed are: approximate measurement invariance (a Bayesian method to assess comparability of data), evaluating hypotheses via the Bayes Factor and information criteria, and combining evidence from multiple studies addressing the same research question. Finally, we propose strategies for reproducibility and reporting standards, outlining the WAMBS-checklist (when to Worry and how to Avoid the Misuse of Bayesian Statistics).